OPERATION & MAINTENANCE OF WASTEWATER **TREATMENT PLANTS**

WATER ARABIA - 2020

W. G. CONNER P.E.

Workshop Outline

08:30 Basic WW Treatment System Needs / Design

- *10:00 Break*
- 10:30 Typical WW Treatment Systems Used in Saudi Arabia
- 11:30 Prayer/Lunch
- 13:00 Wastewater Treatment System Operations
- 14:30 Break
- 15:00 Wastewater Treatment System Troubleshooting
- 15:30 Workshop Conclusion & Q&A Session
- 16:00 Workshop Conclusion

Basic Wastewater Treatment System Needs / Design

Key Concepts Related to WW Treatment Plant:

Design & Operations

Goals for Workshop

Understand:

- Impact of Composition & Flowrate of Feed and Effluent
 - ¬ Determines Possible Unit Operations
- Typical WW Treatment Systems in Saudi Arabia
 - Identify Site Specific Issues & Design Considerations
- --- WW Treatment System Operations
 - --- Select Best Options for WW Treatment Needs & Facility Resources
- --- WW Treatment System Troubleshooting
 - Appropriate Monitoring Identify Deviations from Norms

Session Topics

1st Step Goal for WW Treatment Processes =?

Typically

Contaminant Removal => Environmentally Safe Discharge

OR

Reuse of Effluent

Basic Wastewater Treatment Principals of Operation Determine Treatment Steps

- 1st Understand WW Feed Characteristics
 - Define/Characterize WW Composition / Flow Rate ****
- 2nd Understand How Unit Operations Work
 - \neg What they Can & Cannot Do
- \neg 3rd Each Step Prepares WW for Next Step
 - --- Select Proper Unit Operations Sequence => Final Effluent
- 3rd Understand Normal Operations
 - Monitoring & Preventative Maintenance Needs
 - --- Monitor Daily / Weekly / Monthly -- Required for Evaluation
- 4th Troubleshooting Upsets of Unit Operations
 - --- What Changed to Impact Basis of Operation???

First Need to Understand What We Have

Analysis & Flowrate NOT SO SIMPLE Establish a Solid Base

Projects Often Miss This Step

Understanding the WW Feed – What & Why?

- Understand the WW Feed Composition -> Unit Op. Selection

- *Entrained / Suspended* Contaminants
- Dissolved Contaminants
- --- WW Flowrates -- Simplified Eq. Sizing
 - \neg Monthly Average
 - Hourly Maximum
 - Peak Flowrate
- WW Flow & Composition Variability Eq. Sizing & Impacts Steps Req'd
 - Summer / Winter
 - Batch Operations & Other Variables
 - Vacuum Trucks

WW Feed Characteristics Entrained / Suspended Contaminants

Breakdown / Remove Complex or Harmful Solids

- **High** Concentration of Pollutants => Lowest Cost Removal Options
- Typically Used Prior to More Expensive Treatment Options
- Unit Operations Providing **Physical Removal** of Solids (\$)
 - -- Settling Tanks, Screens & Filters -- Options Using Physical **Size & Density**
 - Oil Separators, Settling Tanks, Grit Removal & Centrifuges Options Using **Density** Differences
 Chemical Addition Enhances Settling / Flotation
- Unit Operations Providing **Biological Breakdown** Of Suspended Solids (\$\$)
 - Biological Oxidation Aerobic Systems (Use Biomass & Oxygen)
 - **Biological Reduction** Anaerobic Systems (Oxygen Poison / Typically Use Biomass & Sulfur)
 - Biomass Digestion with Ultimate Solid Wastes Removed / Disposed
- Unit Operations Using **Chemical Addition** (\$\$\$)
 - --- Chemical Addition -- Chemical Oxidation
 - --- Chemical Addition Enhance Settling w/ Increase Density Differences
 - --- Solvent Addition -- Improves Movement / Separation

WW Feed Characteristics - <u>Dissolved</u> Contaminants

Breakdown / Remove **<u>Dissolved</u>** Chemicals

- --- High Concentration of Pollutants --> Lowest Cost Removal Options
- --- Typically Used Prior to More Expensive Treatment Options
- Unit Operations Providing Biological Breakdown Of Dissolved Chemicals (\$\$)
 - Biological Oxidation Aerobic Systems (Biomass & Oxygen)
 - --- Biological Reduction -- Anaerobic Systems (Oxygen Poison / Biomass & Sulfur)
 - --- Biomass Conversion & Solids Removal -- Solid Wastes Removed / Disposed
- Unit Operations Chemical Breakdown Dissolved Chemicals (\$\$\$)
 - --- Chemical Addition -- Chemical Oxidation -- Less Complex / Toxic
 - --- Chemical Addition -- Chemical Precipitates Allow Concentrated Solid Removal
 - --- Electrical / Radiation Addition -- **Breaks Chemical Bonds =>** Less Complex / Toxic

Understanding the WW Feed – What & Why?

- Understand the WW Composition Unit Op. Selection
 - Dissolved Contaminants
 - Entrained / Suspended Contaminants
- *Required to Select Unit Operations*
- WW Flowrates Used for Rough Eq. Sizing
 - \neg Monthly Average
 - Hourly Maximum
 - ¬ Peak Flowrate
- WW Flow & Composition Variability Eq. Sizing & Impacts Steps Req'd
 - Summer / Winter
 - Batch Operations & Other Variables
 - Vacuum Trucks

Equipment Sizing Criteria per WW Flowrates Key Flowrate Requirements

- Monthly Average (Design) Treatment Capacity; BOD, TSS Removal
 - Treat the Normal Waste Load Basis for Operating Costs
 - \neg Sum of Daily Flowrates / Mass Loadings Divided by Number of Days
- Hourly Maximum Hydraulically Size Pumps, Piping, etc.
 - Pass the Max Hydraulic Flowrate No Tanks Overflowing, Lines Backing-up
 - Process Evaluation / Best Estimate if no Data
- Peak Flowrate 24 hr. Size Emergency Storage
 - Handle Worst Event in X Years Incorporates the Hrly. Max. Capacity
 - Historical Data / Best Estimate
- Diurnal Flow & Loadings Size Equalization Capacity
 - Flow & Load Fluctuations During the Day

Understanding the WW Feed – What & Why?

- WW Composition Unit Op. Selection
 - Dissolved Contaminants
 - Entrained/Suspended Contaminants
- WW Flowrates Simplified Eq. Sizing
 - Monthly Average
 - Hourly Maximum Peak Flowrate

--- WW Flow & Composition Variability --- Variables to Consider

- --- Summer / Winter Seasonal Variability
- --- Batch Operations & Other Variables
- *¬* Vacuum Trucks
- Unknowns Wash Downs, Equipment Cleaning, Water Lines Draining, ???

WW Flow & Composition Variability

--- Flow & Composition Variations Impacting Treatment Needs:

- --- Summer / Winter -- Differences in Cooling
 - Temperature Criteria Unit Operation Selection / Cooling Requirements
 - \neg Algae Growth TSS / Plugging
- Process Operations Batch Processes Running or Down
 - Different Flowrates Sizing
 - Different Composition Unit Operation Selection
 - \neg Rarely Reported as a Flow Variable
- Irregular Discharges Vacuum Trucks
 - Different Flowrates & Composition Sizing / Unit Operation Selection
 - -- Potentially Toxic -- Unit Operation Selection
 - Potentially Different Unit Operations Required
 - \neg Rarely Reported as an Increased Flow

Understanding the WW Feed – What & Why?

- WW Composition – Unit Op. Selection

- \neg Dissolved Contaminants
- *Entrained/Suspended Contaminants*
- WW Flowrates Simplified Eq. Sizing
 - \neg Monthly Average
 - --- Hourly Maximum -- Peak Flowrate

— WW Flow & Composition Variability – Eq. Sizing & Impacts Steps Req'd

- \neg Summer / Winter
- \neg Batch Operations & Other Variables
- ¬ Vacuum Trucks

Influent Characteristics Driving the Design

- Identify Key Contaminants that Determine Unit Operation Needs
 - \neg Floating Oils / Solids
 - \neg Solids Settling
 - Suspended Solids / Oil Emulsions
 - \neg Dissolved Organics
 - Dissolved Inorganics
- --- Identify Flowrates that Determine Sizes
 - Monthly Average (Design)
 - \neg Hourly Max. Flowrate
 - Peak Flowrate
 - \neg Diurnal Changes

First Need to Understand What We Have

Analysis & Flowrate NOT SO SIMPLE Establish a Solid Base

Background Info -> Seat-of-Pants Evaluations

Interactive Discussion on Sampling & Flowrate

Sampling, Analysis and Flow Measurement Discussion Both Industrial & Sanitary

GOAL: Gain an understanding of the activities needed & the amount of effort required to obtain <u>USEABLE</u> composition & flowrate data

Very Important Requires Some Knowledge of Testing Most Overlooked Part of Design

--- Group Discussion ---

Determining WW Composition - Refinery WW

Refinery Management wants to know how well the existing Refinery WW Treatment Plant is operating so that they can determine whether they need to request any design changes to an Existing WWTP.

To provide the Manager with an answer:

1) Where would you sample and what parameters would you sample for at those locations?

2) Are there any simple changes that can be made to get better information?

Determining WW Composition – <u>Refinery WW</u>

Where would you Sample?

- Refinery Inlet line 24" Partially-Full Gravity Flow Line
 - Sample Pt. A Bottom of the 24" line
 - Sample Pt. B Top of the 24" Line
 - Sample Pt. C A Grab Sample of the WW Falling, open air, into the API Inlet Chamber
- API Separator
 - Sample Pt. D A Dipped Sample from below the Surface
 - Sample Pt. E A Dipped Sample from the Surface
 - Sample Pt. F The 12" Suction Line to the Effluent Transfer Pump
 - Sample Pt. G The 8" Discharge Line on the Effluent Transfer Pump
- Walnut Shell Filter
 - Sample Pt. H The Sample on the 8" inlet line to the WSF
 - Sample Pt. I The Sample Pt. on the effluent line from the WSF
- An Equalization Tank 12 24 hour capacity (depending on number of units operating)
 - Sample Pt. J The Sample Pt on the Inlet Line to the Tank
 - Sample Pt. K A Grab Sample from Below the Surface of the EQ Tank
 - Sample Pt. L The Sample Pt. on the Effluent Line from the Effluent Transfer Pump
- A biological WW Treatment Plant w/Gravity Flow Between Aeration and Clarifier Tanks
 - Sample Pt. M Sample Pt. on the overflow line between the Aeration & Clarifier Tanks
 - Sample Pt. N Sample Pt. on the discharge of the Effluent Lift Station Pumps going to the Evaporation Ponds

WHAT TYPE OF SAMPLE ...

Would you Request a Grab, a 24 hr. Composite Sample or do a field analysis / reading?

Typical Analyses for Each Refinery Sample

What Type of Analyses Would You Request?

Well Mixed **

- Total Oil & Grease
- Free Oil
- \neg TSS & TDS
- \neg MLSS
- ¬ *COD*
- $\neg BOD_5$
- \neg Total Metals
- **** Composite Sample Mixed**

Field Analysis **

- Dissolved Oxygen
- Temperature
- *¬ pH*
- Total Residual Chlorine

** Multiple Sample – Ave.

Determining WW Composition – <u>Sanitary WW</u>

Utilities Management wants to know how well the existing Sanitary WW Treatment Plant is operating so that they can determine what equipment changes are needed in an upcoming Capital Project to <u>increase the capacity</u> and <u>add denitrification capability.</u>

To provide the Management with recommendations:

1) Where would you sample and what parameters would you sample for at the following Equipment & Sampling Locations associated with a traditional STP?

2) Are there any simple changes that can be made to the sampling options to get better information?

Determining WW Composition – <u>Sanitary WW</u>

- A 48" Partially-Full Gravity Flow Line passing through a Manual Bar Screen & Parshall Flume
 - Sample Pt. A; A Grab Sample upstream of the Bar Screen
 - Sample Pt. B; A Grab Sample from Discharge of the Flume
- \neg Distribution Box
 - Sample Pt. C; A Grab Sample of the WW in the Inlet Chamber
 - Sample Pt. D; A Grab Sample Dipped from below the Surface of the Inlet Chamber
 - Sample Pts. E H; A Grab Sample of the WW in the Effluent Chambers of one of the 4 Discharges
 - Sample Pt. Comp. # 1; A 24-Hr. Composite Sampler drawing Suction from the Inlet Chamber (sub-surface suction line)
- \neg Aeration Tanks (4)
 - Sample Pts. I L; A Grab Sample Dipped from Below the Surface of the Mixed Liquor in each of the Aeration Tanks
 - Sample Pts. M P; A Grab Sample Taken from the Sample Pt. on the Aeration Tank Overflow Line going to its Respective Clarifier
- --- Clarifier / Settling Tanks (4)
 - Sample Pts. Q T; A Grab Sample (Dipped from below the Surface of the Respective Clarifier)
 - Sample Pts. U X; A Grab Sample from the Sample Pt. on the Overflow Line from each of the Clarifiers
- \neg Effluent Collection Sump
 - Sample Pt. AA; A Grab Sample from the discharge of the Effluent Sump Transfer Pump
 - Sample Pt. Comp. #2; A 24-Hr. Composite Sampler drawing Suction from the Effluent Collection Sump (sub-surface suction)
 - Sample Pt. BB; A Sample Pt. on the Discharge Line on the Effluent Transfer Pump
- \neg Chlorine Contact Tank
 - Sample Pt. CC; The Sample Pt. on the Discharge of the Effluent Transfer Pumps going to the Irrigation Storage Tanks

Typical Analyses for Each Sanitary WW Sample

- \neg Total Oil & Grease
- Free Oil
- \neg TSS & TDS
- \neg *MLSS*
- ¬ *COD*
- $\neg BOD_5$
- Total Metals
- Dissolved Oxygen
- <u>Temperature</u>
- *¬* <u>*pH*</u>
- Total Residual Chlorine

Sampling Locations – Possible Sources of "Errors"

— Tanks – single / two-phase liquid / Solid Suspension

- \neg Surface dipped sample
- -- Subsurface -- sample container
- Tank Complete Mix or a [variable] Rxn based on time and concentration swings?
- \neg *pH impact on suspensions*

\neg Pump suction / discharge

 \neg Well mixed – is that what the process needs to be treat?

- Pipe

- \neg High enough flowrate to prevent settling?
- -- Horizontal Pipe -- Top; air bubble? / Bottom; solids collecting?
- \neg Flowrate in center vs. gradients along inside of the pipe; which closer to the average?
- Batch / Continuous process Which is More Representative?
 - \neg Continuous Flow never constant; pumps starting & stopping to control flow or level
 - Composition changing based on controllers seeking set points Use 24 hr. Composite Samplers
 - \neg Are all processes operating at the same capacity?
 - \neg Are the Lift Stations sized for only process flows or also storm & fire water flows?

WHAT IS THE LEVEL OF ACCURACY FOR EACH ANALYTICAL METHOD??? BEST CASE..... WERE SAMPLES TAKEN EXACTLY THE SAME FOR ALL DATA POINTS? AMOUNT OF FLUSHING???

Determining WW Flowrate

The WW Treatment Plant has several installed mag flow meters (recently purchased and installed). You have been given flowrate information on each location. Should you have any concerns with the data reported? If so, what would you do differently? What Questions need to be answered?

Sample Location =???

- A Large 24" Normally-Full Gravity Flow Line
 - \neg A horizontal section of pipe
 - \neg A vertical section of this pipe with upward flow
 - \neg A vertical Section of pipe with downward flow

- A Transfer Pump

- \neg The Suction line to the pump $\frac{1}{2}$ meter from the Pump
- \neg The Suction Line to a pump several meters of straight pipe to the pump
- \neg The Discharge Line from a pump $\frac{1}{2}$ meters from the Pump
- The Discharge Line from a pump several meters from the Pump but just after a partially open Gate Valve

First Need to Understand What we Have

Analysis & Flowrate NOT SO SIMPLE Establish a Solid Base

Determining WW Composition & Flowrate

Want **Representative** Samples

SOME POINTS TO THINK ABOUT WHENEVER SAMPLING

- Proper location for Sampling or Flowrate Measurement What do you Need to Determine?
 - \neg Is the WW two-phase @ the location?
 - Will Meter Location impact results?
 - Will Meter Type impact results?

¬ Representative Data for Measurements

- \neg Field reading of flowrate or average 24 hr.?
- \neg Grab or Composite Sample?
- \neg Right time to take sample or flow measurement?
- \neg How much data is needed to be representative?
- Gov. mandated Analytical Methods or Laboratory
 - PME Requirements How you are Judged
 - Laboratory Methods Quick & Inexpensive
- Appropriate sample preparation/storage
 - \neg Will the Temperature change the Composition?
 - Will Wait Time before Analysis change the Composition?
 - ¬ Is Sample Degradation taking place?

Typical Analytical Decisions

- ¬ Sample original sample single/two-phase the same after settling?
 - **Does the Lab skim & analyze** the top or bottom layer? EXAMPLE Oily WW samples
 - --- Sample hold times EXAMPLE -- VOC's, BOD/COD
 - \neg Does the sample change over time? How long to analysis? EXAMPLE– TSS & ALGAE
- \neg Analyze an extract?
 - \neg If so, how is it related to the concentration in the aqueous phase? EXAMPLE TCLP
 - What information do you need for the design? Does the sample analysis give you what you need for design or operation? EXAMPLE - TCLP
- \neg Analytical method
 - Simple/quick method labs want to use simple methods Gov. Reporting wants complex methods that can be reproduced EXAMPLE – COD, TOC
 - Method used for Gov. reporting best way to control for compliance
 - \neg Accuracy of method

UNDERSTAND WHAT THE ANALYTICAL RESULTS ARE REPORTING – TCLP – OTHER EXTRACTIONS

DOES the RESULT MAKE SENSE ???

Typical Flow Measuring Decisions

Location of flow meters:

- \neg Pump suction / discharge
- *¬ Pipe*
 - Vertical / Horizontal
 - \neg Top / Bottom
 - \neg Distance from pumps, valves & fittings

When to measure:

- \neg Batch / Continuous process
- \neg Summer / Winter

Type of flow meters:

- \neg Flow displacement
- \neg Mag meter
- Ultrasonic
- \neg Other

Accuracy = ???

WW Flowrate & Composition Variability

- Intermittent flowrate & composition changes

- --- Summer / Winter Operations
 - Impacts of Cooling Water Exchanger Flushing Summer
- *¬ Changes in raw materials or Upstream flows*
- \neg Process design changes
- ¬ *Processes running / not running*
- \neg Tanks being drained
 - Flowrate & composition
 - Equalization rarely meets the needs Very Rarely
- \neg Pumps running / not
 - Lift Stations Cumulative Impact
 - \neg Cooling
 - Chemicals being added to adjust composition, pH, solids separation

BEST ESTIMATES

DESIGN FLOWRATES & COMPOSITIONS ARE ESTIMATES - NOT EXACT #'s

The current situation is ALWAYS DIFFERENT from the design

Understanding these issues can help with meeting effluent specifications

Variability - Impact on Design & Operations

- \neg Which variables are most important
 - Design for LT Ave flow & not handle the peak flowrate? Cheaper but.....
 - Design for high or low concentrations of key pollutants?
 - ¬ What will happen downstream if some of it passes through?
 - ¬ Is there enough Equalization to smooth the variability?
- Understand the Designer's Motivations & the Operations needs
 - Typically different
 - Can often explain why the process isn't achieving the effluent
 specifications
 - \neg Both groups blame the other for any problems
- \neg When reviewing a proposed design....
 - It is Very important to assure that Operations gets what the process needs to meet specifications with all possible feed & operating conditions

RETURN BY 10:30

Typical Wastewater Treatment Systems Used in Saudi Arabia

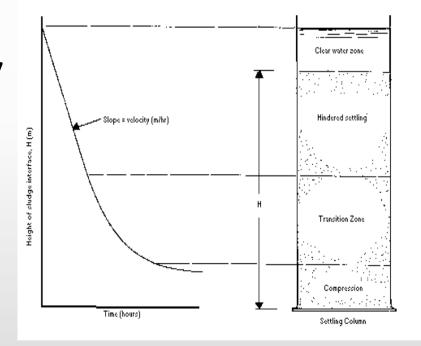
Understanding Principles of Unit Operations & Motive Forces that Drive Them

A "Big Picture" View of WW Equipment Design

Key Points

- Having an Understanding of the Following Principles Will Allow you:
 - To Determine the **Best Technology** for a Specific Need
 - To Determine the Causes of Operational Upsets

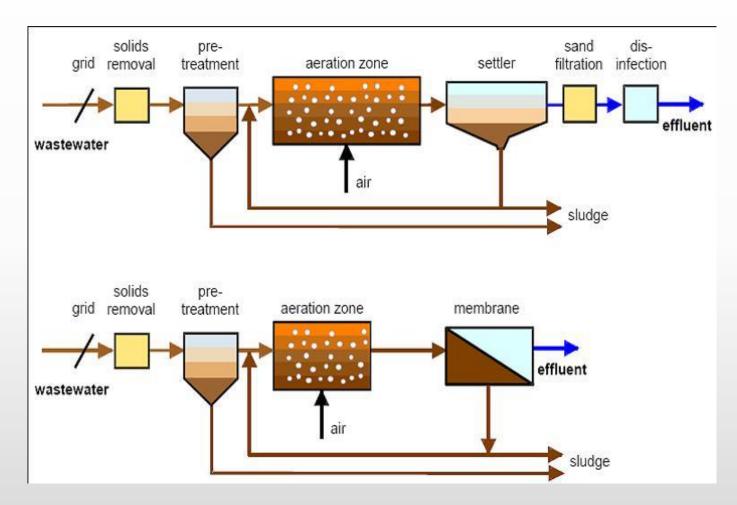
Wastewater Treatment - Principals of Operation What Provides the Driving Forces??


Driving Forces Available for WW Unit Operations

- --- Separation -- Stokes Law
 - --- Gravity -- Inexpensive & Plentiful
 - Most Common Driving Force in WWTP's
 - --- Filtration -- Requires Pressure Drop
- Oxidation
 - --- Chemical / Electrical
 - Biological
- Flow Control
 - Gravity Flow
 - Siphon Systems
 - Level Controls

Stokes Law – Gravity Settling

$$F_g = (
ho_p -
ho_f) \; g \, rac{4}{3} \pi \, R^3,$$


- F_g = Motive Force -> Settling Velocity R = Radius of Particle
- g = Gravity
- $(p_p p_f) = Density Difference$

Basis of Most WW Technology

Physical / Settling Unit Operations

- \neg Settling Unit Operations
 - Solids Removal
 - ¬ Pre-Treatment
 - \neg Settler / Clarifier
 - Grit Removal
- \neg Filter Unit Operations
 - Bar Screen
 - \neg Sand Filtration

Examples of Stokes Law – Using Oil

While the Following Examples Deal with Oil, the Same Principles Apply to Solid Particles

Gravity Oil / Water Separation

Density Differences Provide Motive Force – Liquid/Liquid Separation

Very Simple Example – Most everyone has seen something like this:

Mix Oil & Water Stir

- \neg Oil Mixes With the Water
- Mixture then Settles into two Separate Layers

Principle:

- ¬ Oil droplets < Dense than water</p>
 - Stokes Law

- Oil droplets rise @ Rate Proportional to their difference in density

Separation by Density Gas / Liquid - or - Solid / Liquid

Air Bubbles Less Dense than Water – Floats

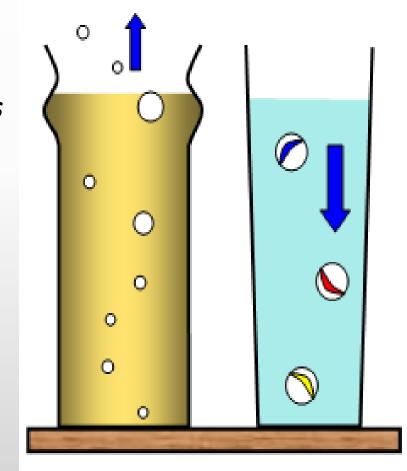


Figure 1

Solids *More Dense than Water - Sinks*

Oil / Water Separation – Impacting Agents to Avoid

Physical Separation: Oil Droplet Size (R³ from Stokes Law Smaller) - Emulsifiers

- *Emulsifier* (Caustic or Other Emulsifier) Introduced into WW Mixture
 - *Emulsifiers Reduce Diameter of Oil Droplets*
 - Reduction in Motive Force Available for Separation => R³ Reduced
 - \neg R³ The Relationship is a Cubed Function Not Linear
 - --- *Requires <u>More</u> Time for Same Separation*

Principle:

- --- *Emulsifiers Increase the Concentration of Small Oil Droplets*
- \neg Per Stokes Law:
 - \neg Motive Force (F_g) is Proportionately Less (per the smaller \mathbb{R}^3)
 - \neg Oil droplets rise **Slower** Proportional to the Cube of difference in Radius & F_q

Solution: To increase/Speed Separation

- --- Eliminate Emulsion forming Chemical(s)
- ¬ Increase Separation Time
- Increase Density Difference
- Increase Driving Force (Centrifuges, Hydro cyclones, etc.)

Emulsion – Stages of Separation

dissolved emulsified separated oil oil oil oil

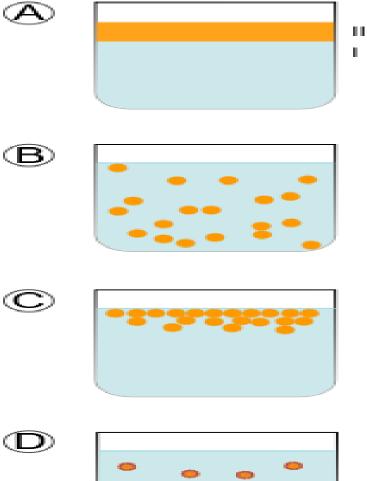
Oil / Water Separation – Impacting Agents to Avoid

Physical Separation: WW & Waste Densities Similar (F_a Small) Densities: Waste & WW

- WW Medium Changes (Decreased Density Difference)
 - *Reduction in Motive Force* Available for Separation => Delta Rho (Density)
 - Density Difference is a Linear Function Less Impacting than Droplet Size
 - Less Density Difference = <u>More</u> Time Needed for Same Separation
- **Principle:**
 - \neg **Decreased** Density Difference (F_a from Stokes Law is Reduced)
 - \neg Per Stokes Law:
 - \neg Motive Force (F_q) is Proportionately Less (per the smaller Density Difference)
 - \neg Oil droplets rise **Slower** Proportional to the Reduced F_q

Solution: To increase/Speed Separation

- *Eliminate Emulsion forming Chemical(s)*
- Add a Solvent to Increase Density Difference
- Increase Separation Time
- Increase Density Difference
- Increase Driving Force (Centrifuges, Hydro cyclones, etc.)


Gravity Oil & Water Separation - Technology

Oil Layer Separated & Floating at the Surface – A

Oil Droplets Start to Separate – B

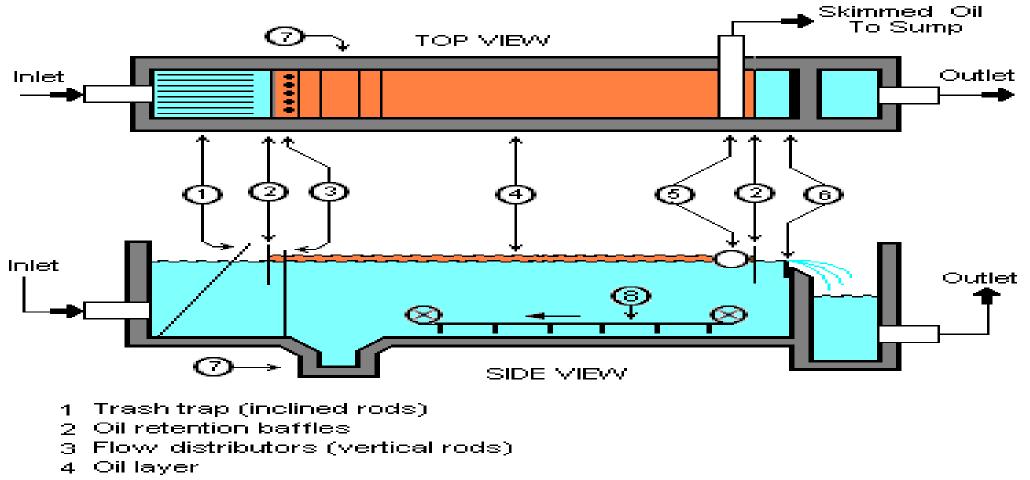
Oil Droplets Collect at Surface – C

Oil & Water Combined & Well Mixed – D

Oil / Water Separation – Impacting Agents to Avoid

Physical Separation: Oil Droplet Size (R³ from Stokes Law Smaller) - Agitation

- Increased Agitation (Pumps & Piping) Applied to WW Mixture
 - Mixing/High Shear Reduces Oil Droplet Diameter & Consequently R³
 - \neg Reduction in R³ Reduces the Motive Force => Less Separation
 - \neg R³ The Relationship is a Cubed Function Not Linear
 - --- *Requires <u>More</u> Time for Same Separation*


Principle:

- Agitation Increases the Concentration of Small Oil Droplets
- \neg Per Stokes Law:
 - \neg Motive Force (F_q) is Proportionately Less (as the Difference in Density gets smaller)
 - Oil droplets rise **Slower** Proportional to the difference in Density

Solution: To increase/speed Separation

- Decrease Agitation Pumps & Piping
- Decrease Emulsifier Concentrations (If Present)
- \neg Increase Separation Time
- Increase Surface Area used for Coalescing of Oil (if Applicable)
- Increase Driving Force (Centrifuge)

Basic API Separator - Application

- 5 Slotted pipe skimmer
- 6 Adjustable overflow weir
- 7 Sludge sump
- 8 Chain and flight scraper

Application of Stokes Law Gravity Solids / Water Separation 30 Minute Settleability Tests

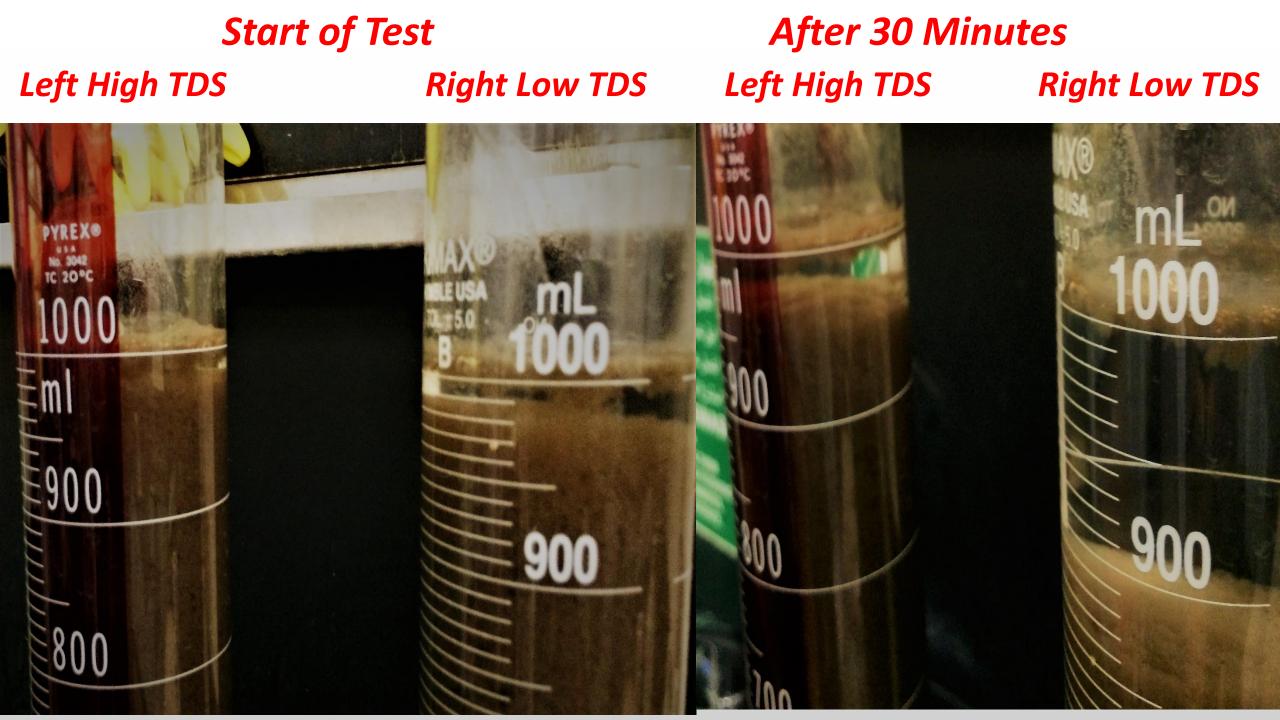
Density Differences => Motive Force – Solids & Liquid Separation

Mixed Liquor (Bio-Mass) -> Graduated Cylinders

 \neg Settle for 30 Minutes

Principle:

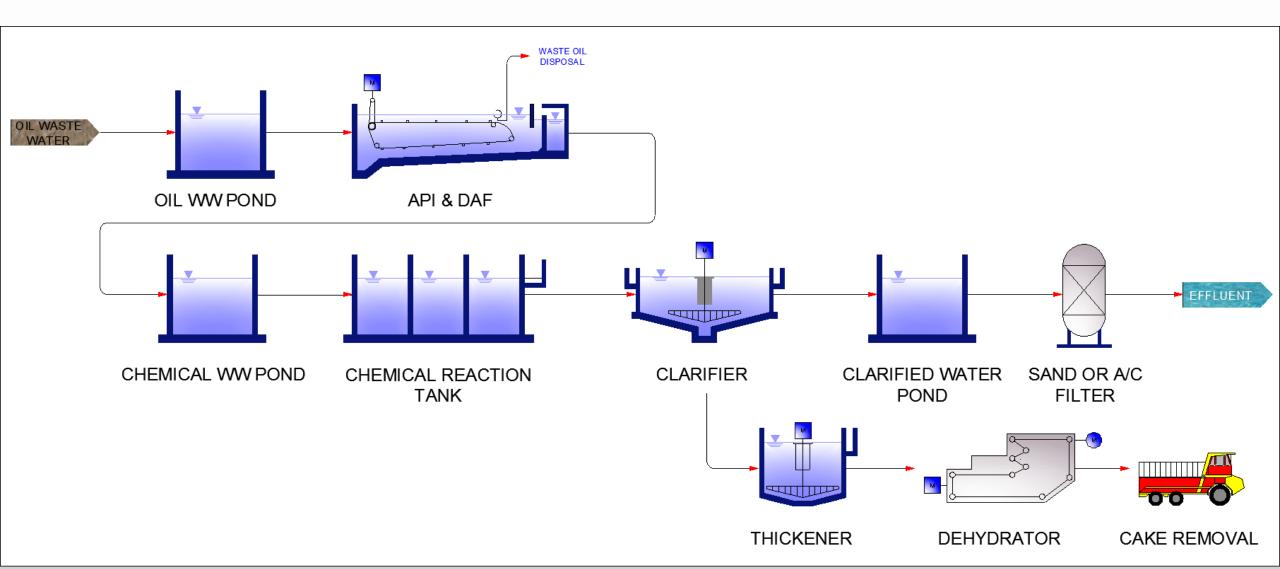
- --- Bio-mass More Dense than Water (Cells Contain Salt Water)
 - \neg Stokes Law
 - ¬ Solids Settle @ Rate Proportional to Their Difference in Density
- --- Low TDS Water -- Greater Density Difference = <u>Better</u> Separation
 - ¬ Two Separate Layers
- Predicts Operation of a Clarifier / Settling Tank


Mixed Liquor

Example of Bio-Mass From Aeration Tank =>

Bio-Mass & Stokes Law

Bio-Mass


- \neg Living Organisms
- \neg Originated in Early Seas
 - Inside of Cells Contain Salt Water
 - \neg Density > Fresh Water
 - ¬ So, Bio-Mass More Dense => Settles
- \neg Upsets
 - Sick / Dying Cells => Rupture & Fluids
 Leak
 - -- Extra Cellular Polymeric Materials
 - Population of Bio-Mass Changes
 - \neg Long Chains / Clumps of Bio-Mass

WWTP's Operate Using Gravity as Motive Force (Predominantly)

Some Common Examples of WWTP Equipment....

Examples of Solids Settling Equipment Most Common WW Technology

Common Clarifier / Settling Tank Design

- Same Principle as 30 Minute
 Settleability
 - \neg Aeration Tank MLSS Enters Center
 - ¬ Water Density Less → Floats
 - Overflows Tiger Teeth -> Effluent Trough
 - Density of Bio-Mass Higher Settles
 - \neg Rakes Drag Sludge to Collection Sump
 - *¬* Upsets
 - --- Bio-Mass Doesn't Separate & Settle -- WHY?
 - TDS Change? High pH, Emulsifier Present?
 - --- Bio-Mass Changes???
 - -- Significant Increase in Flowrate?
 - [MLVSS] Too High?
 - ¬ Sludge Age?
 - \neg Bio-Mass Floats & High TSS in Discharge

When Would a Gravity Based Treatment Step be Used?

Trick Question

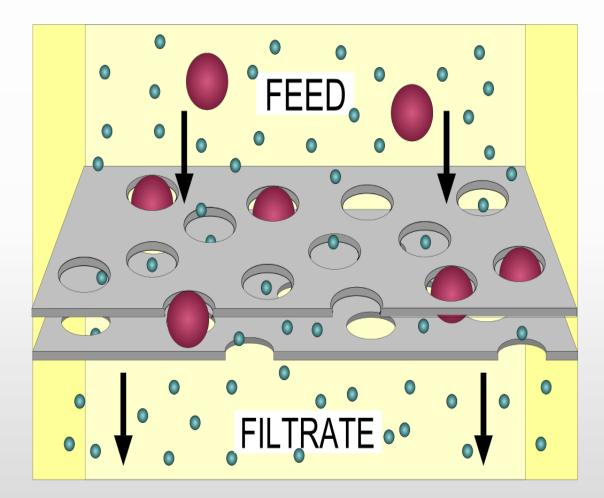
- Almost All WWTP Equipment is fully or partially Dependent on Gravity
 - \neg Either Flow between Tanks
 - \neg Or as the Motive Force to Drive the Desired Unit Operations

Solids Filtration

Physical Separation – Solid Particles Diameter Larger than Filter Openings Used to Simulate how WW Changes will Impact Field Equipment

Typical Laboratory Test: WW With Solids -> Filter Paper over a Beaker

- *¬* Weigh Clean Filter Paper
- --- Waste Water Passes through Filter Paper
- \neg Solids Larger than Pores are Stopped by Filter Paper
- \neg Filter Paper Dried & Weighed


Principle:

- ¬ Paper Stops Particles With Diameter > Pore Size
- Increased Weight of Filter Paper provides a Solids Concentration for WW Tested

Physical Separation – Filtration

Filtration

- *Principles Involved Physical Separation*
 - Pressure Drop Across Media
 - --- Particle Size Distribution
 - Motive Force Could Use:
 - Gravity
 - \neg Pump Pressure
 - \neg Chemical Addition
- Alternative Physical Separation
 - \neg Centrifuge

By Wikiwayman at English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=12841159

Filter Options

Filter Types

- Media Single / Multi
- \neg Belt
- Bag
- \neg Cartridge
- ¬ Drum
- Membrane Reverse Osmosis
- Ultra / Nano
- ¬ *Etc.....*

Each Best Suited for a Specific Application

Control Variables for Physical Separations

Previously Discussed Some Variables Related to Separations.....

- **Density Difference** of Chemicals / Materials to be Separated
- Chemical Addition Coagulation/Precipitation/Electro Potential
- --- *Emulsion Breakers -- Polymers & Ionic*
- Feed / Flux Rate
- Centrifugal Spin Rate -> Pressure
- Contact Time with Plate Packs
- Filter Media
 - Pore Size of Openings on Separation Media
 - Flux Rate Through the Separation Media
 - Pre-Coating of Material on Media
 - Pressure Drop Across Filter
- --- *Residence Time in Treatment Step*

Biological Wastewater Treatment Principals of Operation

Driving Force for WW Unit Operations:

- Separation
 - Gravity
 - Filtration
- Oxidation
 - --- Chemical / Electrical
 - Biological
- Flow Control
 - Gravity Flow
 - Siphon Systems
 - Level Controls

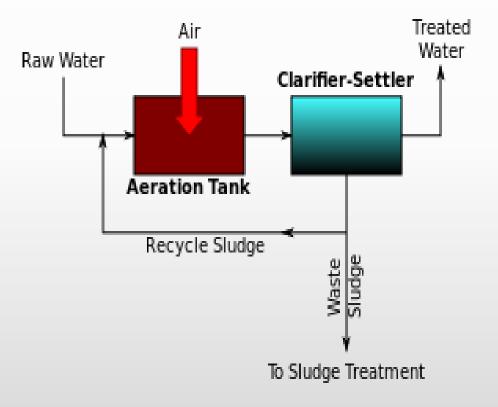
Chemical Oxidation & Reduction Reactions

- Chemical Oxidation -> Breakdown Complex Chemicals to Simple Ones

- ¬ Oxygen Consumed
- Chemical Oxidizers Consumed in Some Rxns.
- Oxidize Metals -> Typically to More Stable / Less Toxic Forms
- --- Can Treat High Concentrations of Chemicals
 - Only Limited by Stoichiometry & Vessel Constraints
- Typically More Expensive than Biological Oxidation
- Chemical Reduction Also Used
 - --- Often for More Refractory (Difficult-to-Treat) Chemicals / Materials

Oxidation / Reduction of Chemicals in WW

- --- Biological Oxidation First Used (Least Expensive)
 - Cell Bodies use Organic Compounds as Food
 - \neg CO₂ + H₂O are Waste Products Returns Chemicals to Nature
 - Also need other Nutrients (N, P, etc.) for Cell Reproduction
 - --- Sanitary WW Part of Food Chain -- Easiest to Treat
 - Industrial Chemicals not Found in Nature Harder to Treat (Refractory)
- ¬ Chemical Oxidation / Reduction Rxn. → Electron Exchange
- Complex Organic Compounds & Strong Oxidizers \Diamond CO₂ + H₂O + ??
 - Hydrogen Peroxide
 - Permanganate
 - *¬ Ozone*
 - \neg Others


Control Variables – Oxidation or Reduction Rxns.

- Variables to Control Oxidation Reactions
 - --- Select Chemical Agents with Greater Electro Potentials
 - Increase Contact/interation Between Chemicals
 - --- *Reduce Particle Size More Total Surface Area in Contact*
 - Provide Additional Mixing
 - *¬* Increase Concentrations of Reactants
 - ¬ Increase Contact Time = Greater % Completion of Rxn.
 - Stoichiometric Ratios in Chemical Rxn. Equations
 - --- Higher Concentrations of Reactants Push Equilibrium => Completion
 - --- Remove Rxn. Products Pulls Equilibrium To Completion
 - Provide Catalysts When the Reaction Chain When Required

Biological Oxidation Alternative to Chemical Oxidation

\neg Chemicals in WW

- Bio-Mass Takes the Place of the Chemical Rxns in a Physical / Chemical Process
- Waste Chemicals are the Food / Energy Source for the Bio-Mass – When Acclimated
- \neg Bio-Mass Uses O_2
 - For Respiration
 - --- Break Down / Oxidize Complex Chemicals to:
 - \neg Water (H₂O)
 - \neg Carbon Dioxide (CO₂)
 - \neg Nitrogen (N₂ gas)
 - \neg Other Less Complex Molecules

Biological WW Treatment - Basic

Treatment Capabilities – Dissolved Compounds & Some Solids

- \neg Typically Can treat:
 - \neg [BOD₅] < 400 600 mg/L Higher in Some Cases
 - ¬ [COD] < 900 mg/L
 - \neg TDS < 6,000 mg/L
- \neg Converts:
 - Carbon Compounds to CO2 & Hydrogen containing to H2O
 - --- Basic Process Ammonia / Nitrogen containing Compounds to Nitrates
 - MLE Process Ammonia Compounds to Nitrogen (g)
 - Others to.... Oxides or Simpler Compounds
- Concerns: Many Situations Can Upset or Kill the Biology w/out Warning
 - High Waste Concentrations
 - Oil & High TSS concentrations
 - Metals & Refractory or Toxic Compounds
 - Highly Variable Feed \

Process is a Living Organism – Need to Nurture it Accordingly

- --- Upsets => TSS Carry-Over or Inadequate Treatment of Harmful Chemicals
 - --- Effluent Pathogens -- Bacterial & Viral
 - Potentially Harmful to Humans

Basic Wastewater Treatment Principals of Operation

Driving Force for WW Unit Operations

- Separation
 - Gravity
 - Filtration
- Oxidation
 - Chemical / Electrical
 - Biological
- Flow Control
 - \neg Gravity Flow
 - Siphon Systems
 - \neg Level Controls

Gravity Flow Systems vs. Level Control Systems

- --- WWTP's Typically Use Gravity Overflow Between Steps
 - *¬* Simplest System Possible
 - \neg Perfectly Matches Influent Flow
 - Level Control Systems Are Never Fully Stable Levels Moving Up & Down; Constantly
- \neg Disadvantages of a Level Control
 - \neg Level Constantly going Up or Down Seeking the Set-Point
 - --- System is Always Seeking a Stable Operation -- Never Actually Achieves
 - Larger Tanks => Greater Variations
 - Significantly more Pumps, Instruments and Control Loops
 - If Nitrogen Blanketing is Required, This System will Maximize N₂ Requirements
- \neg Advantages of a Gravity Flow System
 - --- Very Simple System -- Lowest Cost
 - Minimizes Pumps, Control Systems & Instruments
 - --- Perfectly Maintains Levels -- Most Reliable

Control Variables – Gravity Flow Control

Gravity Flow

- \neg Motive Force is a Function of:
 - --- Gravity & Difference in Elevations
 - Pressure Drop in Transfer Lines
- Difference In Head MUST be > Pressure Drop
 - *¬* This Difference in Head is Between the Surfaces of the Two Connected Tanks
- --- Very Important to Design for Peak Hourly Flow
 - Available Head MUST be > or = Pressure Drop @ Peak Flow
 - Or Tank Overflows

Gravity Flow vs. Level Control

- --- Gravity Flow Between Tanks
 - Saves Money
 - Eliminating Pumps, Sumps, Piping & Control Loops, etc....
 - --- Reduces Maintenance Needs Fewer Level Control Loops
 - Smoothest Possible Transfer of WW In = Out ~ Constant Levels

- Level Control Systems

- --- By Definition / Designed to Constantly Change Tank Levels
- Requires Regular Calibration
- --- Causes a Cascade-Type of Impact on Downstream Equipment
 - The More Level Control Systems Upstream of an Unit Operation the More Unreliable it is

PRAYER/LUNCH

RETURN BY 13:00

Wastewater Treatment System Operations

Putting the Various Options Together to Produce a Target Effluent

Determine the System Operations Required Overall Strategy

- Using Flow & Composition Criteria Discussed this Morning
 - --- Select General Treatment Train
 - Use Technologies Required to Add to a Final Effluent
 - Select Individual Unit Operations
 - Each to Provide a Treatment Need or Needs to Prepare for the next Steps
 - Adjust to Meet Specific Needs / Preferences
 - All WWTP's are Unique Must Accommodate Site Specific Needs
 - Each Step may Require some *Modifications to Work Properly*
 - --- Assumptions => Errors
 - Many Projects Unwilling to do *a Proper Needs Evaluation*

Identify Design Targets / Constraints

Start "Big Picture" & Gradually Narrow Focus on Technology Options

- --- Gov. Compliance Dictates Treatment Steps Leading to Final Effluent
 - --- Government Regulations: PME / GAMEP / Royal Commission / Others??
 - Internal Company Commitments
- --- *Reliability of Effluent Compliance -- Personal/Company Preference*
 - Determines Excess Equipment Capacity
 - Narrows Project Cost > Compliance Useless if Not Compliant
 - **Operational Ease** Compliance & Operational Costs
- Construction Capital Costs
 - Meet Treatment Needs W/O Excess
- **Operational Costs** More Important than Capital Costs
 - Materials, Training & Staffing

Applying Wastewater Treatment Principals To Design

Almost All WW Unit Operations are Driven by or Use One of these

- \neg Separation
 - Gravity
 - --- Filtration
- Oxidation
 - Biological
 - -- Chemical / Electrical
- Flow Control
 - \neg Gravity Flow
 - Level Controls

Types of WW

1st Evaluate Influent Data – Is It More Sanitary or Industrial WW

Sanitary WW

- Contains Materials that are or can be part of Food Chain
 - \neg Excess Food
 - --- Wastes from living organisms
 - **Dead** organisms
- C:N:P-> 100:16:1; Redfield Ratio
- Typically Easy to Degrade/Eat
- --- Rarely Toxic -- Exceptions Metals

Industrial WW

- Not typically part of Food Chain
- Often V. High concentrations
- Doesn't Conform to Redfield Ratio
 - --- Requires Nutrient Supplementation
- Often Toxic to biology
- Requires Acclimation

Types of WW – Treatment

Sanitary WW

- *¬ Nature can handle − w/time*
 - A Treatment Plant Imitates
 the Processes in Nature
- Treatment Plant Steps:
 - Accelerate Natural Processes
 - --- Smaller Footprint

Industrial WW

- Treatment Plant Typically Needed
 - Wastes Not Found in Nature
 - Natural Processes Can't Treat Them
- *Nutrient Addition for Bio. V. Common*
- *¬* Lowest or Highest price options
 ¬ Depends on WW

Sanitary WW Treatment Unit Operations Typical Unit Operation Selections

- Inlet Screening Large Solids or Non Bio-degradable Solids
- Oil removal Typically a Very Simple Skimming <400 500 mg/L</p>
- Grit removal Small Solids
- --- Removal of Dissolved Organic & Inorganic Compounds
 - -- Biological -- Most Important Step
 - \neg Converts to Complex Carbon Molecules to CO₂ & Water
 - Uses Biological Oxidation Lowest Cost Option
 - Nitrogen Compounds -> Nitrates (Basic)
 - Nitrogen Compounds -> Nitrogen Gas (MLE)
 - Phosphate Removal or Physical / Chemical
 - Physical / Chemical Treatment
 - \neg In Place of the Biological Option
 - Typically More Expensive Lots
 - Tertiary Filtration Polishing the Effluent
 - Disinfection Removing any Residual Pathogens Reuse
 - Advanced Systems Virus Filtering & Specific Chemical Compounds

Site Specific Issues Impacting Selection of Unit Operations

Issues Typical of **Saudi Special Needs** – Impacting Design Decisions

- Typically a Mixture of Sanitary & Industrial WW
- --- Almost Always Include some Vacuum Truck Discharges
- Oil Spikes More Common
- \neg More Often a Mixture Could have almost anything in it
 - ¬ Very little Control of Contents
 - --- Flow & Composition Estimates Very Rarely Close to Reality
 - Older Chemicals (No Longer Manufactured PCBs, TEL, DDT) Not Uncommon
- Sanitary WW Very Commonly Dilute
 - Often Requires Supplemental Food for Denitrification Often Below 100 mg/L
- \neg Desert Sand
 - Isn't really Sand High Concentration of Calcium Carbonate
 - Often Contains Iron
 - A Sticky Mess when wet, Plugs Equipment
 - Mixes with any Oil to make an Oily Paste Plugs Equipment
 - Not acceptable for Filter media, leach Fields, etc.
 - Design Contractors Make this Mistake on almost Every Project
 - Because of Carbonates, Assume Oily Sludge Present Everywhere to Some Degree (CPI Separators Esp. Vulnerable)
 - --- Blower/Compressor Maintenance
 - COD Analysis Sand/TDS/Chlorides/Lab Techniques & QA/QC

Site Specific Issues Impacting Selection of Unit Operations

Issues Typical of Saudi Special Needs – Impacting Design

- Remote Areas with only a Few Workers Septic Tanks & Leach Fields
 - Common Sewer Design has Sewer Running from Control Room to Septic Tank
 - $\neg \;$ Septic Tank then overflows to a Leach Field
 - Lack of a Hydraulic Profile Typically Results in Surcharged Sewer Systems
 - \neg WW Backing up in Control Room Kitchens
 - Facilities with Biological WWTPs Struggle with Animals entering their Evaporation Pond areas to drink the Water Big Liabilities

--- WW TDS Higher --- 3,500 to 5,000 mg/L Not Uncommon

- Sabka Water Very High TDS
- \neg This Water Needs to be Treated before being used
 - \neg Can't add it back to the influent of the WWTP with the Sanitary WW
 - \neg Need to provide a Separate Evaporation Pond for it

- Cultural Concerns - WW Treatment Operations

- Per Capita Water Consumption Very High
- \neg Efforts at reducing this use of Water
- Temperature (35 -> 40 C / 95 -> 104 F) Mesophilic Activity Drops Rapidly
 - Bacteria Highly Adapted to Environment

- Operations & Preventive Maintenance => Reliability Most Important Criteria

- Energy Costs Less Important
- National Water Company Development Plans

Selection of Unit Operations

For Predominantly Sanitary WW

--- Pick a Typical Treatment Train -- Assume a Conventional or MLE

- Evaluate Unit Operations Required

- Handle All Needs?
- Add Extra Unit Operations As Needed
 - -- Vacuum Truck Discharges of Oily Wastes -- Closely Monitored Inspection Basin
 - *Confirm Adequate BOD*₅ for Denitrification
- \neg Some Steps Rarely used
 - Primary Clarifiers Saudi WW Typically Low Strength
 - DGF's Difficult to Operate
 - --- Require a Large Amount of Nitrogen for Blanketing System
- \neg Discharge to be Reused
 - -- Add Denitrification => MLE System
 - --- Concentration of Phosphorus Typically Above Discharge Limit
 - \neg If used for Irrigation, it takes the place of fertilizer
 - If Discharged to the Sea, it can cause Algae Blooms
 - --- Biological Phosphorus Removal -- Higher Capital & Complex
 - Chemical Phosphorus Removal Potentially Higher Operating Costs
 - Internal Company Policy Decision

Selection of Unit Operations

Predominantly Sanitary WW

\neg Assume a Conventional or MLE

- Evaluate Unit Operations Required
 - Add Extra / Select Unit Operations As Needed / Desired
 - Automatic or Manual Bar Screen?
 - Automatic Oxygen Concentration Control?
 - Tertiary Filter System Government Determination / Company Determination
 - More Equipment to Operate & Maintain Cost Benefit Analysis Operations Decision
 - More Chemicals Cost Benefit Evaluation Cost Benefit Analysis
 - Higher Risk of Pathogen Transmission Company Policy Decision
 - --- *MBR Government Determination / Company Determination*
 - Lower Risk of Pathogen Transmission Company Policy Decision
 - --- Fewer Unit Operations to Operate & Maintain Cost Benefit Decision
 - Phosphorus Removal Influent & Government Specification
 - -- Chemical Precipitation
 - Biological Removal
 - --- Sludge Centrifuge or Sludge Drying Beds?

Selection of Unit Operations

Predominantly Sanitary WW

- Evaluate Unit Operations Required

- --- Add Extra Unit Operations -- As Needed / Desired
 - Odor Control System?
 - \neg Biological or Chemical?
 - ¬ Type of **Disinfection**
 - \neg Chlorine Gas
 - \neg NaOCl Liquid
 - \neg UV Disinfection
- \neg Decide on:
 - Materials of Construction Liner Type
 - Design Eq. & Piping Safety Factors
 - --- Equipment Layout
 - ¬ *ETC*.....

Simple Process Design

Need to understand in order to **Design & Operate**

- --- Characterize WW Influent -- Flow & Composition
- *Identify Design Targets*
- ¬ Select Type of Unit Operations
 - Sanitary WW
 - Industrial WW
- ¬ 1st Determine Ultimate Targets
 - --- Final Effluent meets Gov. or Internal Requirements
- 2nd Select the Unit Operations Needed For Each Removal Required
- **3**rd Initial Ordering of treatment steps
 - Prepare WW for next step(s)****
- 4th Select Lowest Cost Oxidation method
- --- 5th Select Specific Unit Operational Technologies --- Various Criteria

Unit Operations – Ordering/Selection

The Sum of the Unit Operations need to meet the Design Targets

- The final treatment step Typically set by the effluent specifications
- --- Sanitary and Industrial WW Systems First Remove Highly Concentrated Wastes
- The order of treatment steps and the type of Unit Operations are set by the Influent Specifications of the next Treatment Unit in the line
- Most Important Treatment Step => Either Remove or Oxidize Organic & Inorganic compounds
- Equipment & Operational Costs (within Reason) Typically Less Important than Reliability
- --- The actual process **brand/manufacturer** -- Typically per **Operations Preference**

What is Needed to Finalize Design???

WHEN YOU KNOW WHAT YOU WANT TO INSTALL ...

- Do You Have Enough Data to Specify All of the Equipment?
 - Are you Certain of the Analysis & Flow???
 - Rarely Have Enough Data Can Never Tell Until After
- Alternative Approach Best Estimate & Worst Case Philosophy
- → Assure that the Extremes are Covered If Feasible
 - Determine the Variables you can Identify
 - What are the Max and Min Extremes for WW Variables?
 - --- How Are Unit Operations Impacted by Each Variable?
 - --- Identify Inherent Equalization Capacity --- Sumps, Tanks, Reactors, Etc.
 - --- Can you Live With Worst Case?
 - --- Evaluate Cost of Safety Margins

Ask: if Worst Case Happens, Can I Live with the Consequences?

What options are Available to Mitigate? Equalization Capacity – More is Better

Initial Selection of Unit Operations

For Predominantly Industrial WW

- --- Pick a Typical Treatment Train -- Assume a Conventional or MLE Biological
- Based on Biological Plant Selection Determine the Oil Removal Treatment Train
- --- Evaluate Unit Operations Required
 - Handle All Needs?
 - Add Extra Unit Operations As Needed
 - --- Vacuum Truck Discharges of Oily Wastes -- Inspection Basin
 - *Enough* **BOD**₅ *for* **Denitrification**?
 - If Some Steps Not Required, Remove
 - Primary Clarifiers Saudi WW Typically Low Strength
 - ¬ Discharge to be Reused?
 - Add Nutrients to meet Redfield Stoichiometric Ratios
 - Add Denitrification MLE System Typical
 - Low Concentration of Phosphorus -
 - High Concentration of Some Metals
 - Chemical Precipitation

Very Common Engineering Design Errors

An Error to Assume Conditions the Same as their Previous Jobs....

- Make Assumptions to Minimize Cost => Typical Design Mistakes
 - Challenge Site Specific Needs using Data from other Locations
 - Assume Operations can Replace Automation
 - Assume no Flow Composition or Flowrate Variations Design Flowrate is NOT the typical flowrate to the equipment
 - Assume Mixing Immediate
 - Assume pH a linear Function
- Need to Understand "Design" Flowrate is NOT the Actual Flowrate to treat
 - Most Facilities have a Very High Variability in WW Generation
 - Almost all WWTPs are starting Capacity Upgrade Projects before the Last One is Running
 - Lift Station Pumps Capacity & How Many Operating at any Time???
 - Level Control Start & Stop provides a "Design Flowrate"
- Assume pH is a linear Function It's exponential
- Assume Instrument readings & Lab Reports are 100% Accurate
- **Don't provide Sufficient Equalization** to Resolve even minor Variability

Equipment Design Based on WW Characteristics

- Proper Unit Operations Design Criteria
 - Treatment Capacity Should be Based on the Average Flowrate
 - Piping & Pump Capacities Should be Based on Peak Hourly Flowrate
 - *Emergency Storage Should be Based on Maximum Daily Flow*
 - Lift Station & Tank Storage Should be Based on Diurnal Flow Max.
 - The 24 Hr. Rainfall Events are actually very high when compared with normal flowrates
- --- Sized Appropriately for WW Composition Needs
 - Treatment Capacity Unit Operations Need to Supply Capacity for Average
 - Everything Else is Simply Providing the Hydraulic Capacity as per Above
- --- Use **Equalization (flow & composition)** to Smooth Variability

Possible Information Sources

You will NEVER have all the information you need available

- Control Room measured data
- --- *Field Measurements* -- *portable measurement devices*
- Design Specifications
- Pump Curves Discharge Pressure or Amp Readings
- Pressure Drop through lines
- Similar systems
- --- Worst Case Extrapolations -- If It Can't be Worse -- It should work
 - *¬ Find some limiting variable* & *use it to set worst case*
- Heat & Mass Balances If you know some, you can calculate the others

Routine Monitoring & Troubleshooting Upsets

- Monitor Process to Assure all of the Criteria for the Design Selection
 - --- Have Not Changed
 - If a Treatment Step isn't meeting it's Design Criteria, Check to see what has changed – Feed / Flow to the Unit, Is Something interfering with the Driving force for the Unit Operation not meeting its effluent specs.
 - \neg The above evaluation should be Checked going in both Directions
- If Something has Changed from initial Design Values, Adjust back to original Value(s) & evaluate compliance (after obtaining Management approval)
 - ¬ Operations Will be Different
 - Document all Changes & Prepare a Report on why Changes were required
- To Return Unit Operations to Normal or a New Normal
 - --- Fix Whatever Changed
 - The Deviation Will Be One of the Unit Operation Drivers

Biological WW Treatment – Basic Monitoring

Capabilities – Dissolved Compounds

- Need to know What is Normal in order to Determine if the system isn't running normal
- \neg Create Log Sheets that indicate Typical Readings & Actions if they Deviate
- ¬ System Should treat Feeds of:
 - \neg [BOD₅] < 400 500 mg/L
 - ¬ [COD] < 600 mg/L
- --- Log Sheets should Report the amount of: BOD and COD Removal Percentages
- Log Sheets should Report the amount of NH3 Converted to: either Nitrates or Nitrogen (g)
- --- Log Sheets should Report the concentrations of: Free Oil or Excess Solids
- \neg Log Sheets should Report the concentrations of: Oil & TSS in the influent
- Log Sheets should Report the concentrations of: Metals & Toxic in the influent
- \neg Log Sheets should Report the variation in the Waste Loading from day-to-day
- \neg Log Sheets should Report any upsets that happened during the day
- Log Sheets should Report the concentration of: Effluent Pathogens
- --- Log Sheets should Report: Total Residual Chlorine

RETURN BY 15:00

Operational Monitoring - General

Routine Monitoring of Equipment

Each Unit Operation – Key Operating Parameters

- Using the Data mentioned previously, the Following Evaluations should be performed:
 - --- Compare Values from Upset timeframe to Historical Flow Rates & Other Design Variables
 - --- Check Specific Design Variables against original Design
 - --- Check Depth of Sludge Blanket in Clarifiers & TSS in Effluent
 - --- Check MLSS, DO in Aeration Tanks
 - --- Check Oil Separation in API & CPI Separators
- Check Influent
 - Any Changes since the Initial Variables the **Design were determined?**
 - Any changes in the flow & Composition to any Treatment Steps?
- --- Check Effluent
 - \neg What Effluent Criteria is changed
 - --- What Treatment step is responsible for the removal of that Effluent Constituent?

Typical MLE Biological

Operational Monitoring – Specific for MLE Biological

- Influent Compare the following to the Design Values
 - \neg Flow Rates
 - \neg Concentrations of Contaminants
 - pH, Temperature

- Intermediate Process- Compare the following to the Design Values

- Dissolved Oxygen in Aeration Basins
- \neg Reflux Flow Rates for RAS
- --- *Reflux Flow Rates for Effluent Recycle*
- \neg Odor & Color of MLSS
- --- Sludge Blanket Depth
- --- *30 Minute Settleability*

--- *Effluent – Compare the following to the Design Value*

- Contaminant Concentrations

What Treatment Step is Required to achieve the appropriate effluent Concentration for any Deviations?

Biological WW Treatment – (MBR)

Operational Monitoring – Specific for MBR

--- Influent -- Compare the following to the Design Values

- \neg Oil Concentration
- --- High COD Concentrations -- Any Particularly Higher?
- *Emulsions*
- *¬ pH*
- \neg [BOD₅] > 400 500 mg/L
- ¬ [COD] > 600 mg/L
- \neg Hair or Fibrous Materials
- ¬ Effluent
 - All Parameters Required for Compliance

What part of the **Treatment Train is Required** to achieve the appropriate effluent Concentration for any Deviations in the Influent?

API Separator

Critical Operational Monitoring – API Separator Specific

- Influent – Compare the following to the Design Values

- --- Oil Concentration -- API Feed & Effluent
- High COD Concentrations Any Particular Chemicals Significantly Higher?
- \neg Daily Average and Peak Daily Flowrate
- \neg Emulsions
- Appearance Milky Color?
- --- Floating Materials -- Wax or other materials
- \neg pH Daily Average and Peak High & Low Values measured
- ¬ Temperature Average and Peak High & Low Values
- \neg Difference in Water Elevation on Inlet & Outfall Sides of the Underflow Weir
 - \neg If so, Oily Sludge Depth should be Measured and Reported on log sheets both sides of Weir
- Effluent
 - \neg Oil Sheen
 - \neg Total Oil & Grease Conc.

Headworks / Bar Screen

Critical Operational Monitoring – Headworks Specific

--- Influent - Compare the following to the Design Values

- --- Bar Screen -- Waxy Oil Deposits on Sides & Bars
- Materials Plugging Slots
- Relative Amount of Solids High, Normal & Low (To be Defined by Management)
- \neg Bad Odor H₂S Anaerobic
- High COD Concentration

Troubleshooting Upsets

Final Effluent Not Compliant

Evaluate each Unit Operation – Work Backwards from Effluent

- Identify any Operations Not Working
- --- Compare Each Unit Operation to What it should be Discharging
- Identify What is needed to Provide the Required Driving Force Needed to Produce Design Effluent for that Step
- \neg Does Unit react to Changes in Controls as it should?

 \neg If not, Identify what isn't working

 Make all Changes that appear necessary – if no Improvement Check for Impacts from other Unit Operations

Normal Preventative Maintenance

Record Information for Each Unit Operation

- Anything Out-of-Service?
 - -- What Caused Failure
 - -- Repair Damage & Confirm Unit Working Properly
- \neg Lubrication Schedule
 - Maintain Pumps, Motors, Moving Equipment with Factory Recommended Lubrication
 - Maintain Records of Lubrication
- Cleaning Follow Cleaning Schedule (Based on Initial Evaluation of these Needs Adjusted as Required)
 - Bar Screens Amount of materials removed
 - --- Sumps -- Solids Build-ups
 - Pumps Type of Repair & Pump Operating pressure
 - Instruments Record readings before and after Calibration
- *Equipment*
 - \neg Drain Collected Oil API / CPI's
 - Record Amount of Oil from Each Unit Operation
 - \neg Waste Clarifier Sludge to Maintain MLSS in Aeration
 - \neg Record Amount of Sludge Wasted
- Adjust Recycle Rates
 - --- Effluent Nitrate Concentration
 - ¬ Nitrate Conc. Up => Increase Recycle Rate
 - \neg Check for Visible Differences
 - -- Check for Something Visibly Different -- Familiar with Week to Week
 - \neg Check for Abnormal Noises
 - -- Bad Bearings / Seals / Shaft Out-of-Alignment, Misc.

Questions & Answers

Personal Lessons Learned

- No system is designed for every situation
- \neg No two systems are the same
- \neg It is almost impossible to get enough accurate information to fully understand the needs

IMPORTANT TO LEARN TO:

- → Understand how the system should respond to variations in flow & composition
- ─ Use best estimates & worst case analyses to design & manage operations
 - \neg Ask: Does this make sense?
 - \neg Ask: What should it be / what should happen?
- \neg Question, challenge (politely) when responses don't make sense
- Understand individual motivations
- Take advice from Operators & anyone familiar with the system